
 

 

 

 
 
 

 
 
Method Selection 
and Planning 
 
Edited by 
Team 13: 
 
 
Darcy Adams 

 
Samin Alborzi 
Movahhed 

 
William Dunlop 
 
Nam Duong 

 
Jakub Grizmil 

 
Davids Kacs 
 

 
 
 
 
 

 
 
 
 
 
Team 15: 
 
Joe Wrieden 
 
Benji Garment 
 
Marcin Mleczko 
 
Kingsley Edore 
 
Abir Rizwanullah 
 
Sal Ahmed 

 



Method Selection and Planning 

Software Engineering Methods 
Scrum is our team’s software development method of choice, as this agile methodology is 
suitable for small teams, and shall allow us to deal with changing requirements in the future, 
especially in relatively short time constraints. Along with this, it is in our best interests to 
reconvene in a weekly Scrum meeting, in which we reflect on our progress throughout the 
week, checking that every requirement in our previous stage maps onto at least one 
requirement in our current stage, and address issues which may have been initially 
overlooked before greater complications can arise, as well as have frequent team 
walkthroughs of our artefact throughout its incremental development stages - from the initial 
requirements to the solution we will pose. 
 

● Other agile frameworks such as XP were considered, but Scrum was chosen due to 
it being up to the team to prioritise work according to that which they know is needed, 
as well as having less of a focus on strictly following particular engineering methods 
(e.g paired programming) that XP advocates. 
 

● Focusing on the principles of Scrum rather than the practices (e.g. daily Scrum 
standups, which we are unable to do due to workloads from other modules; user 
stories are not a viable option as we knew the system requirements from the onset), 
allows us to be flexible with how much each person can contribute at a time 
depending on their circumstances, but also ensuring equal overall contribution 
through the project schedule, which means our bus factor remains high (more on this 
later in “Team Organisation”). 

Development and Collaboration Tools 
The Java framework we decided on is libGDX. 
 

● We had considered using LWJGL, a Java library that provides access to native APIs 
for graphics and audio. However, libGDX uses this library in its framework, and since 
code reuse is an essential part of Software Engineering, we decided we would use 
the higher level methods that libGDX provides. Another thing that we had considered 
was using jMonkeyEngine which is a game engine that comes with a software 
development kit. However, this game engine is used for 3D games and our 2D game 
didn’t fit with our ideas. 
 

● On that note, libGDX is quite seamless in that the majority of the program consists of 
regular Java, which our team is familiar with. The high-level libGDX methods may 
simply serve to render graphics to the screen, for example. 

 
Our IDE of choice is IntelliJ. 
 

● IntelliJ IDEA is the recommended IDE by the libGDX team, and so it has the most 
support for the framework. 

● We had considered Visual Studio Code as an alternative, however, we had 
difficulties with VS Code during our findings, specifically with using the installer from 
libGDX, which creates projects using gradle. 



● We had also considered Eclipse but we fairly quickly decided against Eclipse 
because as a team we did not feel comfortable enough with Eclipse compared to the 
other two. 

● IntelliJ on the other hand does not have this issue, and thus in learning how to use 
libGDX, IntelliJ is often referenced, making it the ideal choice. Furthermore, IntelliJ 
lends itself to a project-style of development. It has features that aren’t present in VS 
Code that make it easier to work on large scale projects with multiple classes such as 
automatic class refactoring. 
 

For version control, we are using Git with our repository stored on GitHub. 
● This allows us to avoid collisions and other inconsistencies when merging different 

members’ works together. 
● Furthermore, hosting the repository on GitHub allows us to easily maintain version 

control history and even gives us access to GitHub Pages which allows for easy 
access to documentation. 

● Git has native integration in IntelliJ thus making it easier to pull and push changes. 
● Github is also a great help when it comes to writing up excellent documentation. 
● Github Action also helped us to set up continuous integration using workflow 

templates. 
 
For software testing, we decided to use Junit4 with mockito. 

● Mockito is the most popular testing framework for Java which can let users write tests 
with a clean and simple API. Tests are very readable and they produce clean 
verification errors. 

● We chose Junit4 because we found more material in our research to set up a Junit4 
framework and utilising it rather than Junit5 framework. We also found that Junit4 
works better with existing tools to test LibGDX. 
 

For online meetings, we use Zoom. 
A weekly scheduled Zoom Scrum meeting allows us to communicate via voice and 
text chat as well as sharing our screens for input from other members for any 
problems encountered. Zoom also gives us a platform to engage in Team-Customer 
meetings should we have any questions or queries for the client or vice versa. 
 

For further collaboration, we use Discord. 
Separate text channels allow for easy communication on the relevant issues in each 
channel, along with support for uploading various file types. Voice channels allow us 
to communicate with each other in a less structured way when we need to 
collaborate before the Scrum meeting. 

 
For the storage and collaboration of documents, we use Google Drive, making it easy for 
several members to update the same document and edit in real time through the version 
control functionality. 
 
We Also considered using Slack for our communication. Slack is a communication platform 
targeted towards companies, However we felt that all of the above collaboration tools were 
enough, so we decided not to use Slack. 

Team Organisation 
In terms of team organisation, we did not assign anyone a set role, however our meetings do 
have structures in terms of everyone does something during the meeting. Our Team leader 



is William Dunlop who is usually more comfortable with doing most of the talking and 
assigning tasks to each member of the team. Usually, during our team meetings, someone 
has the role of scribe and taking the key points/notes of the meeting which can help us 
remember the work we have done each week. Also, sometimes the tasks are assigned to 
team members using Github projects. 
At the beginning of the project, During the first couple of meetings, we discuss the project 
brief, making sure everyone understands it and requirements are usually discussed within 
the beginning week as the whole group works together.  
Once the requirements are set, everyone is assigned to a different task with a deadline 
(which is usually the next group meeting). Davids Kacs is the member who is the most 
comfortable with the code implementations of the project but usually every group member is 
assigned a coding task, in groups of two, taking part in the coding of the project so we have 
a good bus factor. During the meetings, we check everyone is up to date with their tasks and 
we keep track of the progress of the project, usually done by the team leader. 
Similar scenario happens when assigning group members to do certain parts of the code 
documentation. Apart from risk assessment which for the most part, everyone has a say in 
them, other parts of documentation is assigned to individual members or members in groups 
of two (depending on the amount of workload and our time left). All works done by 
individuals are eventually proofread by one other or more members of the team. 
We believe that this form of team organisation is appropriate because although we may have 
one or two members of the team who might be more comfortable/skilled in some areas of 
the project, we believe that nobody has developed a specific field of expertise yet and we 
are all quite flexible with what we can do. Also, this approach not only increases our bus 
factor but can have a great impact on the individuals’ learning. Giving everyone a chance to 
perform a different task each week, means we can get the task done as well as letting the 
individuals have the freedom to do the tasks they are more comfortable doing. 

Project Breakdown  
(For assessment 1) 

 
The website is to be the face of our 
project, an area for which all of  the 
documentation and updates about the 
project can be viewed by the client. 

 
 
Requirements are elicited from a 
Team-Customer meeting, then each 
User, Functional and Non-Functional 
Requirement is defined. 
 
 
 
 
The Abstract Architecture is created as a 
diagram allowing the team and the client 
to understand how the implementation is 
laid out, with a Concrete representation 
to be made from it. 

 
 



 
Software Engineering methods are 
selected and the project is planned using 
a Gantt chart. 
 
 
 

 
Risks are identified, represented, and 
evaluated based on their likelihood of 
occurrence and their impact should they 
occur. Methods to mitigate these risks 
are also discussed. 
 
 
 
The product is implemented using Java 
and libGDX, completed with 
documentation. Any requirements that 
will not be implemented should be 
discussed and justified. 

 

Project Plan ​(For assessment 1) 

 
Tasks that are ​dependent​ on others are denoted by a leading red arrow: 

● Requirements elicitation dictates what features we must implement and thus what 
our Architecture and Method Selection will be. Defining each kind of requirement 
cannot be completed without first eliciting the requirements with the client in a 
Team-Customer meeting. There may be several of these over the course of the 
project but this initial elicitation is vital. 

● Describing specific use cases for the product depends on knowing what the product 
should do, as denoted by the requirements. 

● Abstract Architecture is a high priority as without it, the implementation can’t begin. 
● The Implementation and the Concrete Architecture can be completed simultaneously 

as the implementation of the product will help define what the architecture looks like 
and vice versa. However, neither can be completed without first outlining an Abstract 
Architecture to give a plan for which entities should be programmed. 



● Discussing the unimplemented requirements can be started during Implementation 
as the development team should have a good understanding of how much they can 
get done. 

 
The ​critical path ​consists of  Requirements → Abstract Architecture → Method Selection → 
Implementation. The plan above assumes that each task takes the longest possible amount 
of time to allow room for any risks that may arise. Changes to how long each task takes and 
when they begin/end is discussed on the website. 
 

Project Plan ​(For assessment 2) 

 
19/01 - 25/01 

● Requirements are already existing within the documentations for assessment 1 
(team15) so we checked them and added a few more in order to include the new 
features requested as a part of the Assessment 2 criteria. 

● Made an abstract architecture 
● Implementation started with working on powerups and getting them to work 

26/01 - 01/02 
● Strategy of change management finalized 
● Then we moved to add difficulty to our implementations (with a separate screen to 

select difficulty).Then we started to implement a pause screen and savings. 
Alongside these implementations we started researching CI and some testings. 

23/01 - 09/02 
● Putting CI in place and writing tests , as well as finishing off the implementation.  
● The writing of documentation is now divided between group members according to 

the group work and implementations done. 
● Produce a concrete architecture 

09/02 - 10/02 
● Final checks to make sure everything is in place, all requirements are met, risks are 

identified, the documentations are proof read  
● We are using the same domain for our website as we did in assessment 1. However 

the website hosted there is the Team 15 website. We have made some modifications 
(adding the updated documentation and new sprint updates) but the old 
documentation is also still available .  

 
The ​critical path ​consists of  Requirements → Abstract Architecture → Implementation 
(powerups, difficulty and savings)→Concrete Architecture.  


