
Implementation

Team 13

Darcy Adams

Davids Kacs

Jakub Grzmil

Nam Duong

Samin Alborzi Movahhed

Will Dunlop



Architecture

A few words on how our abstract architecture influenced the final implementation. All of these
changes are discussed in more detail further in the document.

Powerups

Obstacle class has changed in the abstract architecture into a Collidable class. This was di-
rectly reflected in the implementation. However, the abstract architecture suggests that this would
become the base class from which both Obstacle and Powerup inherit. Whilst this was originally
the plan, both classes ended up being combined into one Collidable class. This was because we
discovered that it would be too costly to refactor due to how obstacle spawning was implemented
in the original project. This satisfies UR POWERUPS and FR POWERUP RATE, whilst still per-
forming all the functions it needs to satisfy all of the requirements Obstacles was responsible
for.

Difficulty

We knew that we would need to keep track of the game difficulty (for requirements
FR DIFFICULTY SELECTION and UR DIFFICULTY BEFORE GAME). This is why the Difficulty

enum was created. This translated directly into code, though this enum ended up doing more then
we originally anticipated, and was used to actually switch the difficulty, not just to keep track of
which one was selected.

Saving

In order to allow the user to save and reload the game, we decided to add a GameSaver class,
which in the implementation ended up being called Prefs. In the abstract architecture Save nd
Load can be seen as classes inheriting from GameSaver. When implementing, however we real-
ized that it made more sense to make them static sub classes, belonging to the same ‘namespace’
but not sharing any functionality. This class changed its name to Prefs, because we decided to
use the LibGDX Preferences class and the Save and Restore (‘Load’ on the diagram) held wrap-
pers for some of its methods.

A PauseScreen was also introduced. This was a very simple addition, but crucial in implement-
ing saving (FR SAVE GAME, FR PAUSE SCREEN). This was just as simple as anticipated. It is
seen as another Menu on the diagram, but was implemented like all other screens.

Changes to the previous project

Changing Obstacle to Collidable

This change was motivated by requirement UR POWERUPS. We discovered that the easiest
way to implement this (and by extension the one requiring fewest changes to the original imple-

1



mentation) would be to spawn powerups with the same mechanism as obstacles. The class was
renamed to Collidable, and the enum became CollidableType. The name change was to mini-
mize confusion as powerups are not obstacles.

Previously the way boats took damage from obstacles was by subtracting the value of the
damage field of the obstacle they collided with. This system was unsuitable for powerups, so
instead each ObstacleType now has a lambda associated with it (stored as a functional interface
CollidableEffect). Each lambda takes a Boat object and modifies it. For the obstacles this is
as simple as calling the addHealth method of the Boat class with a negative value. Powerups call
other methods such as addSpeed() or setBuff() (which changes the multiplier for the amount of
damage boats take). See Figure 1 for an example.

Figure 1: Example of an obstacle and a powerup with their respective lambdas.

ROCK("rock.png", 50, boat -> {

boat.addHealth(-ROCK_DAMAGE * boat.getBuff () * Settings.OBSTACLE_DAMAGE_MULTIPLIER);

}),

HEAL("heal.png", 0, boat -> {

boat.addHealth(boat.getBoatType ().getHealth () * HEAL_BY);

});

Changing the way screens create, store and use their resources

In the older version of the project, each screen would store each texture and button in their own
variables. In order to increase readability and make the intended function of the code more appar-
ent, textures and the buttons are now stored in arrays. A third array was made to store prefixes of
texture names, this allowed us to store texture names for icons and buttons in a single array (the
reason for this will become apparent in the next section).

In some cases where the action taken by each button was very different, a fourth array was
created to store the actions of each button, this is similar to how different actions of collidables are
implemented. See Figure 2 for an example.

Figure 2: Example of different actions invoked by buttons stored in an array

buttonActions = new Runnable []{

() -> Gdx.app.exit(),

() -> game.setScreen(previousScreen),

this::save

};

Factories

Classes ButtonFactory and VectorFactory were made to manage the creation of Buttons and
(some) Vector2s. This was done for the same reason as the previous change. This was especially
important in screens. The Button constructor takes a position vector and 2 textures. The textures

2



have names in the form texturename button active.png and texturename button inactive.png. This
is now abstracted behind a collection of static methods in the form
ButtonFactory.nameOfScreen("texturename"). Allowing us to simply pass a single prefix of a
texture name and have the ButtonFactory methods append button (in)active.png to the end of
that name. These methods also calculate the position of the buttons on the screen. The position is
automatically adjusted each time the method is called (tracked with a static variable). See Figure 3
for an example.

Figure 3: Examples of instantiating buttons in the previous and current versions

// Original

this.exitButton = new Button(new Vector2 ((Gdx.graphics.getWidth () - EntityType.BUTTON.

getWidth ()) / 2.0f, 100f / Settings.SCALAR), "exit_button_active.png", "

exit_button_inactive.png");

// new

for (int i = 0; i < buttons.length; i++) {

buttons[i] = ButtonFactory.mainMenu(textureNames[i]);

}

New features

CollidableTimer

This is a class, which creates a timer. This timer runs asynchronously and invokes the lambda
passed to the constructor of the class when the time runs out. This is used for powerups which
need to run out (like invulnerability or speed up). E.g. when the timer runs out the speed is brought
back to its normal state.

Difficulty selection

These features were added to complete UR DIFFICULTY BEFORE GAME and
FR DIFFICULTY SELECTION. The Difficulty enum was added. This enum contains the 4
difficulties (EASY, MEDIUM, HARD, VERYHARD) and a method which sets all of the appropriate settings
for each respective difficulty. Each difficulty takes a Runnable as a parameter. When invoked, the
Runnable calls the setVars method with appropriate values for each setting.

Selecting a difficulty invokes the Runnable. The selection happens when the user reaches a
newly added DifficultySelectScreen. This screen is very similar to the BoatSelectScreen. It
is created by the BoatSelectScreen and takes its place in creating a MainGameScreen.

Pause screen

Added to complete FR PAUSE SCREEN, this is the screen the user sees when they press Escape
during game play. The main purpose of this screen is to allow the user to save at any point (as

3



specified in UR SAVE FEATURE), however it also has the buttons to resume the game as well as
to exit. This functionality is stored in an array of Runnable, as can be seen in Figure 2.

Saving and restoring

Functionality required by UR SAVE FEATURE, FR SAVE GAME and FR LOAD GAME.
The class Prefs was added to control the saving and restoring. This class has 2 static sub-

classes, Save and Restore. Both of these classes have methods open() and close() to be called
before and after each save and restore operation. These methods ensure that after data has been
written to the save file it is marked as valid, and before it was restored, the validity of the file is
checked. This is done by writing a special key ‘save exists’ to the save file. If this key does not
exist when the save is being restored, a SaveDoesNotExist exception is thrown. See the next
section for how this exception is handled.

The saving process starts when the user presses the ‘save’ button on the pause screen. This
does several things. The newly added save() methods are called for all objects which are not
trivial to save, i.e. not primitive datatypes or objects which can be easily transformed into primitive
datatypes. DragonBoatRace, MainGameScreen, Settings and CollidableStats are examples off
such datatypes that need to be saved on the PauseScreen. Each save() repeats the process, until
there are no non-primitive types to save.

Primitive types are saved using Prefs.Save.putType() where ‘Type’ is the type to be saved. In
case of float and int, these are as simple as being wrappers for LibGDX Preferences.putFloat()

and Preferences.putInteger(). Others like Prefs.Save.putVector2() have to save their com-
ponents individually.

In most cases it is possible to use the variable name as the key when storing that vari-
able. This becomes an issue when storing arrays of objects. For Float[] arrays, a method
Prefs.Save.putArray() exists, which serializes the array to JSON and stores it as a string. This,
however, was impossible to do with Boat. Boat has its own save() method. All boats have a name

field, which is used to ‘salt’ the key to avoid writing data to the same key multiple times.
Reloading is very similar, but it starts in MainMenuScreen where the user presses a button to

‘resume’ their game. For each Prefs.Save.putType() there exits a Prefs.Restore.getType()

which returns that type. If Prefs.Restore.open() Throws an exception, this exception is caught
and a popup screen is presented to the user stating ‘Could not find a saved game’, if the user then
chooses ‘play’ the game begins normally.

Popup screen

Popup screen is a screen used to convey some information to the user. It can be constructed with
a message which will be displayed. The words ‘Press Space to continue’ are also displayed. Upon
pressing the space bar the user will be returned to the screen which spawned the popup.

This is used to notify the user that their game was saved, when they press the ‘save’ button,
as well as to tell them if no valid save file exists when they press ‘resume’.

4


