Architecture

Team 15 Team 13
Joe Wrieden Will Dunlop
Benji Garment Samin Alborzi

Movahhed
Marcin Mleczko

Nam Duong
Kingsley Edore

Jakub Grzmil
Abir Rizwanullah

Darcy Adams

Sal Ahmed
Davids Kacs

Architecture v0.6

Preface

This document documents our various architectural iterations over the course of the project
schedule. The document is added to as new requirements arise (refer to version history for
this document’s various iterations).

- v0.1 Creation of the document, and adding our abstract class diagram architectural
representation.

- v0.2 Justifications for the abstract representation have been added but require
revision.

- v0.3 Justifications for the abstract representation have been revised. Concrete class
diagram added. Behavioural diagram may be added. Justifications for concrete
diagram(s) needed.

- v0.4 Concrete diagram justifications added and revised. A behavioural state diagram
may still be added and justified.

- v0.5 Last edits for final edition. Team decision to not add behavioural diagram due to
time restraints for deliverables.

- v0.6 Edited version of this document, updating all the changes made to the project
from Team 13

Abstract Representation of Software Architecture
Note: The diagram was split into 2 parts so it is easier to read

@BoatType @ Difficulty
@GameSaving Fast EASY @Hitbox
Agile MEDIUM
Endurance HARD
/ T \ Strong VERy HARD T
©5ave @Load © UR_SAVE_FEATURE ©FR_DIFFICULTY_SELECI’ION ©FR_COLLISION_DETEC['ION
(©)FR_save_came (©)Fr_LoAD_GAME

I@uR,D\FHCULTY,EEFORE,GAMEI |©He\p|
| I
;

e
1
i i I Kn
|©NFRﬁMOVEMENTfEXPLANATION |©NFR7RIJLE57EXFLANAT\ON| |©NFR7ATI’R\BUTES| |©FR7PALISE7$CREEN|
| I 1| |
E I 1k !

|©Cu|hdab\s| |©Boat| |©Hlthx|
| | I i |
! I 1k |

|©Obstacle| |©Playerant| |©ComputerBoat|
I I I
t] & t

|©INVULN |©SPEEDUP |©LESSDAMAGE| |©LESSTIME| |©HEAL| |©UR_POWERIJPS| ‘@ROCK| |©BRANCH|]@LEAF|
I 1 1 : | | 1| |
I |k] &]| I I f I

Concrete Representation of Software Architecture

Difficulty

In our team’s Requirements Engineering, we used the PlantUML tool to create the UML
class diagram above as a very high level, abstract representation of the game’s Software
Architecture. UML was our choice of modelling language, as using natural language to
describe architecture can be imprecise and verbose since there are many different ways of
doing the same thing, however UML graphical modelling allows people from all
backgrounds, technical or nontechnical, to grasp the gist of complex concepts that code
aims to carry out. As well as this, it is an industry standard and not language nor technology
dependent. These are updated versions of the project’s abstract and concrete architectures,
changed to include new classes added to satisfy new requirements.

Justification for (original) Abstract Representation of
Software Architecture

This architecture builds on the original and includes requirements provided for assessment
2. It reflects our decisions made prior to actual implementation, and serves as a basis for our
lower level design. The architecture shows the classes and enums that the game will consist
of, and we checked that every component in this abstract model relates back to the
requirements.

This high level overview of the architecture allowed us to visualize the finished project and
hence enabled us to plan when and how all of the features will be implemented. Had it been
a lower level design closer to the detail of the code, making necessary design adjustments
would have been costly and difficult on top of already having invested considerable time,
resources and effort. Not only is it useful for bridging the communication gap between
system stakeholders and software engineers, but also it aids project planning by allowing us
to make decisions such as on allocating work or design problems concerning trade offs
amongst potentially conflicting quality attributes before actual implementation. Thus it was
advantageous to spend some time using a higher level design as we did.

Justification for Concrete Representation of Software
Architecture

Further on in our Software Development Lifecycle, we developed a concrete representation
of what we have planned for the Software Architecture of the game. This concrete
representation is composed of a structural diagram representing the static features of the
system. We checked that every system requirement relates forward to at least one
component in this architectural model, in order to make sure everyone’s understanding was
thorough and up to standard before implementation. The components of the concrete
architectural diagrams’ relation to system requirements (in turn derived from user
requirements, so we are making sure that we are still following through with the
requirements we elicited) are justified under “Justification”.

We used a class diagram form of structural modelling, as it is most applicable to the object
oriented style used in our programming solution. It is clear that the class diagram builds from
the abstract software architecture above and looks at the classes that are more specific to
the code in more detail. The naming convention between the updated abstract architecture
and the concrete architecture has changed slightly (details can be found here:
https://team-13-rlc.github.io/pdfs/Impl2.pdf)1. The tool used in order to make this diagram
was the UML Class Diagram tool provided by the IntelliJ IDE.

The diagram provides a critical link between the requirements engineering and the actual
design of the software we implemented. It identifies the main structural components in the
system and the relationships between them. By generating the concrete architecture from
the abstract architecture (the precursor of which in turn was the functional and nonfunctional
requirements), it is ensured that we keep to the requirements set out by the stakeholders,
and as a result the concrete architecture helps reinforce these requirements into our

software implementation. A key difference in the two representations is that this
representation has moved away from explicitly referring to the nonfunctional requirements,
as they have been incorporated into the design, and since this one is more technical and
closer to the code. Having this concrete representation of the design we have settled on will
allow it to be easier for us to map the necessary components into the actual code in the
organisational way we decided upon.

We tried to reuse existing paradigms and patterns as much as possible. Broadly this meant
using an object oriented approach, as converting the project to any other structure would be
infeasible within the time constraints. We also tried to follow patterns such as creating and
extending an enum “Type” to keep track of certain complex variables. As well as closely
following the Screen creation pattern.

Justification for how the concrete architecture builds from system requirements:
Note: justification for original requirements are omitted and can be found here:
https://spanishforsalt.github.io/pdfs/Arch1.pdf
- Collidable: This class used to be called Obstacle and still fulfils all of those
requirements. However it is now also responsible spawning powerups and hence
UR_POWERUPS and FR_POWERUP_RATE (see
https://team-13-rlc.github.io/pdfs/Impl2.pdf for further explanation of this change)

- CollidableType: replaced ObstacleType and also supports UR_POWERUPS and
FR_POWERUP_RATE, by defining both obstacles and powerups. This enum stores
the actions which the collidable take when they are collided with.

- DifficultySelectScreen: Used to allow the selection of the difficulty,
UR_DIFFICULTY_BEFORE_GAME.

- Difficulty: This enum class stores the settings for each difficulty, it also landles setting
all of the settings for the correct difficulty, FR_DIFFICULTY_SELECTION.

- PauseScreen: This is where FR_PAUSE_SCREEN is satisfied and where
FR_SAVE_GAME (and more broadly UR_SAVE_FEATURE) can begin.

- Prefs: This class houses the Save and Restore subclasses used for FR_SAVE_GAME
and FR_LOAD_GAME respectively.

https://team-13-rlc.github.io/pdfs/Impl2.pdf

Bibliography

- “Software Engineering”, lan Sommerville, Chapter 6

- "UML Online Training”, Tutorials Point

- “Use Case Models and State Models”, Binary Terms

- Software Architecture: Foundations, Theory, and Practice, R.N. Taylor, N.
Medvidovic, and E.M. Dashofy John Wiley & Sons, 2008.

- Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J.
Stafford. Documenting Software Architectures: Views and Beyond. Addison- Wesley,
Boston, 2002.

